Quiz 12 Chemical Engineering Thermodynamics April 6, 2017

In the Kalina cycle system (KCS) an ammonia (1) -water (2) mixture is used in a power generation cycle as the working fluid. For geothermal or solar power generation the Kalina cycle has improved efficiency by a factor of 1.6 over a steam-based Rankine cycle. It can improve efficiency by 1.25 in a waste heat recovery system. This improvement in efficiency is achieved by taking advantage of the broad range of boiling temperatures for the binary mixture that can more closely match the heat source compared to a steam system. The Kalina cycle usually uses an ammonia-water mixture as the working fluid, which is a "zeotropic mixture" meaning that there is no azeotrope. (http://shodhganga.inflibnet.ac.in/handle/10603/37842 Thermodynamic optimization of Kalina cycle systems at low medium and high temperature heat recoveries, N. Shankar Ganesh (VIT University, India 2015). Ganesh notes that the first step in designing the Kalina system is to calculate the bubble and dew pressures. Ganesh reports an equilibrium point of $\mathrm{P}=35 \mathrm{Bar}, \mathrm{T}=90^{\circ} \mathrm{C}, \mathrm{x}_{1}=0.709$ and $\mathrm{y}_{1}=0.871$. Use these values to calculate the Margules coefficient (Ammonia (1), Water (2)).
a) Use these values to calculate the one parameter Margules coefficient.
b) Calculate the Margules Acid Base (MAB) coefficient at $90^{\circ} \mathrm{C}$. How does it compare to part a?
c) Using the one-parameter Margules coefficient from part "a" calculate the dew pressure at $30^{\circ} \mathrm{C}$ for an equimolar mixture. Proceed until convergence (a maximum of two iterations after the initial guess using Raoult's Law).
d) Using the one-parameter Margules coefficient from part "a" calculate the bubble pressure at $30^{\circ} \mathrm{C}\left(303^{\circ} \mathrm{K}\right)$ for an equimolar mixture.

$$
\begin{align*}
& \frac{G^{E}}{R T}=A_{12} x_{1} x_{2}=x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2} \\
& \mathrm{R}=8.314 \mathrm{~J} /\left(\text { mole }^{\circ} \mathrm{K}\right) \\
& \\
& \qquad \begin{array}{lll}
\alpha\left(\mathrm{J} / \mathrm{cm}^{3}\right)^{1 / 2} & \beta\left(\mathrm{~J} / \mathrm{cm}^{3}\right)^{1 / 2} & \mathrm{~V}\left(\mathrm{~cm}^{3} / \mathrm{mole}\right) \\
\text { (1) Ammonia } 2.11 & 8.44 & 23.3 \\
\text { (2) Water } 50.1 & 15.1 & 18.0 \\
A_{12}=\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)\left(V_{1}+V_{2}\right)(4 R T)
\end{array}
\end{align*}
$$

Antoine Constants (Tin ${ }^{\circ} K$ P in Bar)

	A	B	C	$\mathrm{T}_{\mathrm{Min}}\left({ }^{\circ} \mathrm{K}\right)$	$\mathrm{T}_{\mathrm{Max}}\left({ }^{\circ} \mathrm{K}\right)$
(1) Ammonia	4.87	1110	-10.4	240	372
(2) Water	3.56	644	-198	379	573
(2) Water	4.65	1440	-64.8	256	373
		$\boldsymbol{T i s}$ in ${ }^{\circ}$ K and Pis in Bar			
		$\log _{10}(\mathrm{P})=\mathrm{A}-(\mathrm{B} /(\mathrm{T}+\mathrm{C}))$			

Fig.A. 1 Property regions on temperature-concentration diagram for ammonia-water mixture at constant pressure
http://shodhganga.inflibnet.ac.in/handle/10603/37842

$$
\begin{array}{ll}
\mathbf{(}_{\text {Modified }} & y_{i} P=x_{i} \gamma_{i} P_{i}^{s a t}
\end{array} \text { or } K_{i}=\frac{\gamma_{i}^{L} P_{i}^{s a t}}{P}
$$

C. 1 MODIFIED RAOULT'S LAW METHODS

The equation that must be solved is: $y_{i} P=x_{i} \gamma_{i} P_{i}^{\text {sat }}$

Bubble P

Dew P

Answors Quizl2 CAE Thermo
a)
a) 4,28
b) 1.09
c) $0,00534 \mathrm{hac}$
d) 17.4 har

$$
r_{1}=\frac{0.871}{0.709} \frac{35 \text { bar }}{52.7 \text { har }}=0.816
$$

$$
\gamma_{2}=\frac{(1-.871)}{(1-0,709)} \frac{35 \text { har }}{0,454 \mathrm{hor}}=34.2
$$

$$
A_{12}=\frac{x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2}}{x_{1} x_{2}}=4.28
$$

b)

The two calas diffes
c)

$$
\begin{aligned}
& T=30^{\circ} \mathrm{C} \quad y_{1}=1 / 2=0,50 \quad \Sigma x=1 \\
& p=\frac{1}{\frac{y_{1}}{\gamma_{1} p_{1}^{\text {ral }}}+\frac{y_{2}}{\gamma_{2} p_{2}^{\text {lat }}}} \\
& p_{1}^{\text {rot }}=10^{n}\left(4.87-\frac{1110}{\left(30^{\circ}+2738\right.}-10.4\right)=11.9 \mathrm{bar} \\
& p_{2}^{\text {iont }}=104\left(3.56-\frac{644}{\left(30^{6} 6+273^{\circ} k-198\right)}\right)=0.00267 \mathrm{har}
\end{aligned}
$$

$$
\begin{aligned}
& A_{M A B}=1.09
\end{aligned}
$$

$$
\begin{aligned}
& \frac{G^{E}}{R T}=A_{12} x_{1} x_{2}=x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2} \\
& \gamma_{1}=\sum_{x_{1}}^{x_{1}} \frac{p}{p_{1}} t \\
& \text { prot } 80^{\circ} \mathrm{C}=10^{n}\left(4.87-\frac{1110}{90^{\circ} \mathrm{C}+273^{\circ} \mathrm{C}-10.4}\right)=52.76 \mathrm{ar} \\
& P_{2}^{1} \text { sot } 90^{\circ} \mathrm{r}=10 \mathrm{n}\left(3.56-\frac{644}{90^{\circ}+1+273 \mathrm{~K}-198}\right)=0.454 \mathrm{bar}
\end{aligned}
$$

Assume
Recall's
Law
for int id values $\gamma_{1}=\gamma_{2}=1$

$$
\begin{aligned}
& p=\frac{1}{\frac{0.5}{11,96 a r}+\frac{05}{0.00267 \mathrm{har}}}=0.00534 \mathrm{har} \\
& x_{1}=\frac{y_{1} P}{\gamma_{1} P_{1} \text { rat }}=\frac{y_{1} P}{P_{1}^{301}}=\frac{0.5 \cdot 0.00534 \mathrm{han}}{11.9 \mathrm{har}} \\
& =0.000224
\end{aligned}
$$

$$
\begin{aligned}
& =0.9998
\end{aligned}
$$

list Iteration

$$
\begin{aligned}
\gamma_{1} & =\exp \left(A_{12} x_{2}^{2}\right)=\operatorname{epp}(4,28 \cdot 1) \\
& =72.2 \\
\gamma_{2} & =\exp \left(A_{12} x_{1}^{2}\right)=\exp (4,28 \cdot 0.000224) \\
& =1.00 \\
p & =\frac{1}{0.5}+\frac{0.5}{72.2\left(11.9 \mathrm{aval}^{2}\right)}+\frac{0.1}{(1)(0.00267 \mathrm{bur})} \\
& =0.00534 \mathrm{bar} \\
x_{1} & =\frac{0.5(0.00534 \text { bar })}{72.2(11.9 \mathrm{bar})}=3.11 e^{-6} \\
x_{2} & =1.00
\end{aligned}
$$

Wo charge in P so the relatim has con roped $P=0.00534$ bar
d) Bubble Paerrue $\Sigma_{y}=1$

$$
\begin{aligned}
& x_{1}=x_{2}=0.5 \\
& p=x_{1} \gamma_{1} p_{1}^{\text {rat }}+x_{2} \gamma_{2} p_{2}^{\text {rat }} \\
& \gamma_{1}=\exp (4.28(.25))=2.92 \\
& \gamma_{2}=e n(4.28(.2 r))=2.92 \\
& p_{1}^{\text {ralisorc }}=11.9 \text { bar } \\
& p_{2}^{\text {calico }}=0.00267 \mathrm{har} \\
& p_{1}=0.5(2.92) 11.9 \mathrm{ban}+0.5(2.92) 0.00267 \mathrm{har} \\
& =17.4 \mathrm{bar} \\
& x_{1}=\frac{x_{1} \gamma_{1} \rho_{1} \text { rat }}{p}=1.00 \quad y_{2}=\frac{x_{2} \gamma_{2} \rho_{2} \text { it }}{\rho}=2.24 e^{-4}
\end{aligned}
$$

